217. An Investigation of Charge Effects on NMR. Coupling Constants. The Charge Induced Variation of s-Densities at the Nucleus

by Roland W. Kunz
Institute of Inorganic and Physical Chemistry, University of Bern, CH-3000 Bern 9

$$
\text { (6. VIII. } 80 \text {) }
$$

Summary

The dependence of the ns-density at the nucleus, $\left|\Psi_{\mathrm{ns}}(0)\right|^{2}$, on atomic number and charge is examined for the elements helium to radon. The validity of the widely used assumption of a constant valence s-density at the nucleus, as well as the statement that metal-phosphorus NMR. coupling constants, ${ }^{1} J(\mathrm{M}, \mathrm{P})$, are strongly influenced by contraction of the phosphorus 3 s orbital is critisized. A possible explanation by rehybridisation within an MO-framework is offered instead.

Introduction. - One bond metal to ligand atom coupling constants, ${ }^{1} J(\mathrm{M}, \mathrm{L})$ where M is ${ }^{103} \mathrm{Rh},{ }^{107,109} \mathrm{Ag},{ }^{111,113} \mathrm{Cd},{ }^{183} \mathrm{~W},{ }^{195} \mathrm{Pt},{ }^{199} \mathrm{Hg}$ and L is ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N},{ }^{31} \mathrm{P}$, are very often discussed in an empirical manner on the basis of the more theoretical formalism offered by Pople \& Santry [1] as given by the expressions (1) or (2), under the assumption that the so-called Fermi-Contact term is dominant.

$$
\begin{equation*}
J(\mathrm{~A}, \mathrm{~B})=\frac{-64 \pi^{2}}{9 \mathrm{~h}}(\mathrm{~g} \beta \hbar)^{2} \dot{\gamma}_{\mathrm{A}} \gamma_{\mathrm{B}} \sum_{\mathrm{i}}^{\text {occ }} \sum_{\mathrm{j}}^{\text {unocc }}\left(\Delta \mathrm{E}_{\mathrm{i} \rightarrow \mathrm{j}}\right)^{-1} \sum_{\mathrm{p} \in \mathrm{~A}}^{\mathrm{n}} \sum_{\mathrm{q} \in \mathrm{~B}}^{\mathrm{n}^{*}} \Pi_{\mathrm{ijpq}} \tag{1}
\end{equation*}
$$

with $\Pi_{\mathrm{ijpq}}=\mathrm{C}_{\mathrm{ip}}^{\mathrm{s}} \mathrm{C}_{\mathrm{iq}}^{\mathrm{s}} \mathrm{C}_{\mathrm{jp}}^{\mathrm{s}} \mathrm{C}_{\mathrm{jq}}^{\mathrm{s}}\left|\Psi_{\mathrm{sp}}(0)\right|^{2}\left|\Psi_{\mathrm{sq}}(0)\right|^{2}$

$$
\begin{equation*}
J(\mathrm{~A}, \mathrm{~B})=\frac{16 \pi^{2}}{9 \mathrm{~h}}(\mathrm{~g} \beta \hbar)^{2} \gamma_{\mathrm{A}} \gamma_{\mathrm{B}}\left|\Psi_{\mathrm{ns}, \mathrm{~A}}(0)\right|^{2}\left|\Psi_{\mathrm{ns}, \mathrm{~B}}(0)\right|^{2} \cdot \Pi(\mathrm{~A}, \mathrm{~B}) \tag{2}
\end{equation*}
$$

with $\Pi(\mathrm{A}, \mathrm{B})=-4 \sum_{i}^{\text {occ }} \sum_{\mathrm{j}}^{\text {unoce }} \frac{\mathrm{C}_{\mathrm{iA}}^{\mathrm{s}} \mathrm{C}_{\mathrm{jA}}^{\mathrm{s}} \mathrm{C}_{\mathrm{iB}}^{\mathrm{s}} \mathrm{C}_{\mathrm{j}}^{\mathrm{s}}}{\Delta \mathrm{E}_{\mathrm{i} \rightarrow \mathrm{j}}}$

Therein is $\mathrm{g}=2.0023, \gamma$ is the nuclear gyromagnetic ratio, β is the Bohr magneton, $\Delta \mathrm{E}_{\mathrm{i} \rightarrow \mathrm{j}}=\varepsilon_{\mathrm{i}}-\varepsilon_{\mathrm{j}}$ where ε is the energy of an occupied (ε_{i}) or an unoccupied (ε_{j}) molecular orbital, $C_{\lambda p}^{s}$ and $C_{\lambda q}^{s}$ are LCAO coefficients of s-type atomic orbitals
centered on $\mathrm{A}(\mathrm{p} \in \mathrm{A})$ and $\mathrm{B}(\mathrm{q} \in \mathrm{B})$ and $\left|\Psi_{\mathrm{sp}}(0)\right|^{2},\left|\Psi_{\mathrm{sq}}(0)\right|^{2}$ are the s-electron densities at the nucleus of A and B of the atomic orbitals p and q. The subscripts p and q run over all s-orbitals centered on A and B respectively and become constant in the case of equation (2) where only valence shell orbitals are included.

One of the most frequently discussed spin-spin coupling constants in transition metal chemistry is the one bond metal-phosphorus coupling constant, ${ }^{1} J\left(\mathrm{M},{ }^{31} \mathrm{P}\right)$. In such discussions the ns-density at the nucleus of M is often assumed constant [2]. On the other hand, a change of the corresponding value of phosphorus was introduced to account for changes in ${ }^{1} J\left(\mathrm{M}, \mathrm{PR}_{3}\right)$ when R is substituted by Sn, C, $\mathrm{N}, \mathrm{O}, \mathrm{I}, \mathrm{Br}, \mathrm{Cl}$ and F [3]. It was argued that more electronegative substituents increase the charge on phosphorus, hence the phosphorus orbitals are contracted and ${ }^{1} J(\mathrm{M}, \mathrm{P})$ increases. The latter seems to be in contradiction with ESR. results that allow an explanation of the phosphine dependence of ${ }^{1} J(\mathrm{M}, \mathrm{P})$ on the basis of changing phosphorus s-character in the phosphorus metal bond [4]. To gain more insight into the mechanisms that determine ${ }^{1} J(\mathrm{M}, \mathrm{P})$, a systematic study of the effect of charge on the s-densities at the nucleus for the elements helium to radon was undertaken together with some calculations of the EHMO and ab initio type on the systems $\mathrm{M}-\mathrm{PR}_{3}$ and PR_{3}.

Experimental section. - Calculations on atoms. All non relativistic values of atoms were calculated from Hartree-Fock atomic orbitals of Clementi \& Roetti [5] as long as not otherwise stated. These orbitals are of the p-zeta-Slater type (STO) as described by equation (3) with λ indicating the symmetry species, a accounts for the subspecies that transforms according to λ and i indicates the $\mathrm{i}^{\text {th }}$ orbital and p the $\mathrm{p}^{\text {th }}$ basis function of symmetry λ.

$$
\begin{equation*}
\Psi_{\mathrm{i} \lambda \alpha}=\sum_{\mathbf{p}} \chi_{\mathbf{p} \lambda \alpha} \mathbf{C}_{\mathrm{i} \lambda \mathbf{p}} \tag{3}
\end{equation*}
$$

The basis functions $\chi_{\mathrm{p} \lambda a}$ are STO's given by equation (4), wherein $\mathrm{R}_{\lambda \mathrm{p}}(\mathrm{r})$ are the radial parts and $Y_{\lambda \mu}(\Theta, \Phi)$ are spherical

$$
\begin{equation*}
\chi_{\mathrm{p} \lambda a}(\mathrm{r}, \Theta, \Phi)=\mathrm{R}_{\lambda \mathrm{p}}(\mathrm{r}) \cdot \mathrm{Y}_{\lambda a}(\Theta, \Phi) \tag{4}
\end{equation*}
$$

harmonics. The calculation of the s-density in a p-zeta representation for the limiting case $r \rightarrow 0$ becomes extremely simple and is given by equation (5) where i refers to the main quantum number and $\zeta_{\text {sp }}$ is the orbital exponent of the 1 s orbital.

$$
\begin{equation*}
\left|\Psi_{\mathrm{is}}(0)\right|^{2}=\left(\sum_{\mathbf{p}} \mathrm{C}_{\mathrm{isp}}\left(\zeta_{\mathrm{sp}}^{3} / \pi\right)^{1 / 2}\right)^{2} \tag{5}
\end{equation*}
$$

EHMO-calculations. The off diagonal elements, H_{ij}, of the hamiltonian matrix were calculated from the H_{ij} 's by a weighted Wolfberg-Helmholtz formula [6] with $\mathrm{k}=1.75$. The double zeta STO's of Clementi \& Roetti [5] were taken as radial functions for phosphorus and chlorine atomic orbitals, hydrogen was represented by a single Slater function with exponent 1.3. The geometries used for PCl_{3} and $\mathrm{HPCl}{ }_{3}$ + were: $\Theta(\mathrm{Cl}, \mathrm{P}, \mathrm{Cl})=98^{\circ}, \mathrm{d}(\mathrm{P}, \mathrm{Cl})=3.03 \AA, \mathrm{~d}(\mathrm{P}, \mathrm{H})=1.42 \AA$.
$A b$ initio calculations. The GAUSSIAN 70 program was used [7a] with an internal STO-3G basis set [7b]. The geometries of compounds PR_{3} and $\mathrm{H}_{3} \mathrm{~B}-\mathrm{PR}_{3}$ are given in Table 1 .

Results and Discussion. - Our knowledge about calculated s-densities at the nucleus of atomic ground states or near ground state configurations is quite com-

Table 1. Geometries used for the calculation of the compounds $P R_{3}$ and $H_{3} B-P R_{3}$

R	$\mathrm{d}(\mathrm{P}, \mathrm{R})^{\text {a }}$)	$\left.\mathrm{d}(\mathrm{P}, \mathrm{B})^{\mathrm{a}}\right)$	$\left.\mathrm{d}(\mathrm{B}, \mathrm{H})^{\mathrm{a}}\right)$	$\left.\Theta(\mathrm{R}, \mathrm{P}, \mathrm{R})^{\mathrm{b}}\right)$	$\Theta(H, B, H)^{\text {b }}$)
Free phosphines					
H	1.4206	-	-	93.83	-
$\mathrm{NH}_{2}{ }^{\text {d }}$)	1.653	-	-	105.50	-
$\mathrm{OH}^{\text {e }}$)	1.562	-	-	104.33	-
Cl	1.990	-	-	103.50	-
F	1.567	-	-	97.80	-
Borane complexes ${ }^{\text {c }}$)					
H	1.399	1.937	1.212	101.13	114.65
$\mathrm{CH}_{3}{ }^{\text {f }}$)	1.819	1.901	1.212	105.00	113.50
$\mathrm{NH}_{2}{ }^{\text {d }}$)	1.653	1.887	1.150	105.50	115.09
OH^{e})	1.562	1.879	1.200	104.33	115.00
Cl	1.990	1.870	1.200	105.00	115.00
F	1.538	1.836	1.207	99.88	115.02
PH_{4}	1.414	-	-	109.47	-
$\mathrm{F}_{3} \mathrm{P}=0 \mathrm{~g}^{\text {) }}$	1.530	-	-	102.50	- .

${ }^{\text {a }}$) $\ln \AA$; b) in degrees; c) all borane complexes had staggered conformation; d) $\mathrm{d}(\mathrm{N}, \mathrm{H})=0.90 \AA$, $\left.\left.\theta(\mathrm{P}, \mathrm{N}, \mathrm{H})=110.0^{\circ} ;{ }^{\mathrm{e}}\right) \mathrm{d}(\mathrm{O}, \mathrm{H})=1.05 \AA, \Theta(\mathrm{P}, \mathrm{O}, \mathrm{H})=119.47^{\circ} ;{ }^{\mathrm{f}}\right) \mathrm{d}(\mathrm{C}, \mathrm{H})=1.08 \AA, \Theta(\mathrm{P}, \mathrm{C}, \mathrm{H})=109.64^{\circ}$; g) $\mathrm{d}(\mathrm{P}, \mathrm{O})=1.44 \AA$.

Fig. 1. Logarithm of $\left|\Psi_{n s}(0)\right|^{2}$ for $n=1-7$ as a function of atomic number Z. Relativistic values calculated from wave functions of [8d]
plete throughout the periodic system [8]. From Slater's rules [9], the density of an s-orbital with fixed main quantum number is expected to increase with increasing atomic number as a consequence of the raising effective nuclear charge felt by an electron in this orbital. This qualitative prediction is fully settled by both relativistic and nonrelativistic calculations [8].

The results for the ground states of the atoms hydrogen to berkelium are summarized in Figure 1. A comparison of s-densities at the nucleus calculated from relativistic atomic orbitals and from nonrelativistic Hartree-Fock atomic orbitals shows no significant differences for the ground states even for inner shells of heavier elements. Whereas the densities of the $1 \mathrm{~s}, 2 \mathrm{~s}$ and 3 s atomic orbitals increase regularly, the corresponding values for the $4 \mathrm{~s}, 5 \mathrm{~s}$ and 6 s orbitals show distinct regions of different slopes in the plot of the logarithm of $\left|\Psi_{s}(0)\right|^{2}$ versus atomic

Fig. 2. $\left|\Psi_{s}(0)\right|^{2}$ of the valence shell s-orbitals as a function of the number of ns-, np-and ($n-1$)d-electrons for the periods 2-7
number, Z. These irregularities are exclusively observed for valence shell orbitals whereas the graph $\left|\Psi_{s}(0)\right|^{2}$ vs Z smoothens as soon as an orbital belongs to the 'core'.

The behaviour of the valence s-orbitals is once more pictured in Figure 2. Three distinct regions can be seen in this plot with approximately constant slope within each region. In this plot the periods two to seven are stacked such that the abscissa gives directly the number of $\mathrm{ns}, \mathrm{np},(\mathrm{n}-1) \mathrm{d}$ and ($\mathrm{n}-2$)f electrons. It is obvious that the three regions correspond to the main group, d-block and f-block elements respectively. The main group elements show the steepest raise and the rare earths the flattest one. This behaviour can easily be understood through the concept of incomplete shielding which is described by Slater's rule or by the more quantitative rules of Clementi \& Raimondi [9] [10]. If the nuclear charge is increased by one charge unit and one more electron is added, the difference in nuclear charge effectively felt by a valence electron depends on the kind of the state of the added electron. The shielding of the additional nuclear charge is nearly complete if the additional electron is introduced into the n-2 shell, the shielding becomes less effective if it is introduced into the $n-1$ shell and becomes very incomplete in the valence shell. Obviously this concept reflects the behaviour of $\left|\Psi_{s}(0)\right|^{2}$ versus atomic number in Figures 1 and 2. Another feature of Figure 2 is the crossover of the second and third period in the middle of p-block. This crossover is not due to errors of non-relativistic calculations as the comparison with relativistic values shows. Although this feature will not be discussed in detail it should be mentioned that the expectation values $\left\langle\mathrm{r}^{-3}\right\rangle$ of the np orbitals of the noble gases also follow the sequence $\mathrm{Ar}<\mathrm{Ne}<\mathrm{Kr}$ and so do matrix induced shifts of spectra of species isolated in low temperature noble gas matrices [11].

To test the trends in the numerical values and the validity of equation (2), one may take the reduced one-bond coupling constant $[1],{ }^{1} \mathrm{~K}(\mathrm{M}, \mathrm{X})$, with a constant X -atom, say phosphorus, as a probe. If the density calculations and equation (2) are adequate, a linear dependence of ${ }^{1} \mathrm{~K}(\mathrm{M}, \mathrm{X})$ from $\left|\Psi_{\mathrm{M}, \mathrm{ns}}(0)\right|^{2}$ should be expected provided that the polarizability term Π (A, B) does not alter significantly. Figure 3 shows a plot of $\left|\Psi_{\mathrm{M}, \mathrm{ns}}(0)\right|^{2}$ versus ${ }^{1} \mathrm{~K}\left(\mathrm{M},{ }^{31} \mathrm{P}\right)$. The length of the bars corresponds to the actual spread of the experimental coupling constants. Two different correlations seem to exist for main group elements and for transition metals. This can eventually be explained by differences in the polarizability term of equation (2) ${ }^{1}$. The variations of ${ }^{1} J(\mathrm{M}, \mathrm{P})$ for a given metal, or put in terms of Figure 3, the horizontal length of the bars, could result either from changes in the polarizability term or either of the $\left|\Psi_{\mathrm{ns}}(0)\right|^{2}$ terms. There exist some hints to which is the leading term. On the basis of simple orbital contraction arguments one would expect larger values of ${ }^{1} J(\mathrm{M}, \mathrm{P})$ for the more positively charged octahedral Rh (III) and $\mathrm{Pt}(\mathrm{IV})$ phosphine complexes relative to the less positively

[^0]charged square planar $\mathrm{Rh}(\mathrm{I})$ and $\mathrm{Pt}(\mathrm{II})$ analogs, which is opposite to the observed trends. Indeed it is well known [3e] that for comparable ligands the sequence ${ }^{1} J(\mathrm{Pt}(\mathrm{IV}), \mathrm{P})>{ }^{1} J(\mathrm{Pt}(\mathrm{II}), \mathrm{P}) \gtrsim^{1} J(\mathrm{Pt}(0), \mathrm{P})$ holds. This leads to the conclusion that the polarizability term is dominant.

Fig. 3. $\left|\Psi_{n s}(0)\right|^{2}$ versus the reduced coupling constant $K(M, P)$. The horizontal length of the bars corresponds to the actual spread of the observed coupling constants. Different correlations together with 95% confidence ellipsoids are shown for main group elements and transition metals.
Table 2. Densities ${ }^{\text {a }}$) of the valence shell s-orbital at the nucleus for different configurations, spectroscopic terms and charges

 ○んJm N - \rightarrow ont m N -

m + $+10-1$ +	$\stackrel{n}{+}$		$0 \underset{+}{\sim}+$	$\stackrel{m}{+}$	\pm	
- $\quad 0 n+m$	N	-	ond	n	N	-

Table 2 (continued).

Element Configuration				Charge	Term	$\begin{aligned} & \|\Psi(0)\|_{\mathrm{ns}}^{2} \\ & \text { a.u. } \end{aligned}$	Element Configuration				Charge	Tern	$\begin{aligned} & \|\Psi(0)\|_{\text {ns }}^{2} \\ & \text { a.u. } \end{aligned}$
f	d	s	p				f	d	s	p			
Ti	2	2			IG	2.0007	Zn	10	2		0	1 S	4.5407
					3 F	1.9532		10	1		$+1$	2S	6.0233
					1D	1.9800			2	2	-1	1D	6.6213
					3 P	1.9833			2	1	0	2P	6.9175
					1 S	2.0850			2		+1	1 S	7.8836
	2	1		+1	4F	2.8097	Ge		2	3	-1	4S	8.8164
	1	2			2D	3.2614						2D	8.9622
V	4	2		-1	5D	0.8619			2	2	0	3P	9.5433
	5	1			7 S	0.5784						1D	9.6111
	4	1		0	6D	1.9504			2	1	+1	2P	10.6080
	3	2			2H	2.2673	As		2	4	-1	3P	11.6970
					2G	2.2533						1D	11.7976
					4F	2.2218						1 S	11.9420
					2F	2.3010			2	3	0	4S	12.4281
					2D	2.3070						2D	12.4971
					4P	2.2510						2P	12.5420
					2 P	2.2673			2	2	$+1$	3P	13.5770
	2	2		$+1$	3F	3.7019						1D	13.6261
	3	1			5F	3.2861						1 S	13.6840
Cr	6	1		-1	6D	0.3170	Se		2	5	-1	2P	14.9031
	5	2			6S	0.9371			2	4	0	3 P	15.7229
	5	1		0	7 S	2.2162						1 D	15.8053
	4	2			1 I	2.5508						1 S	15.8608
					3 H	2.5293			2	3	+1	4S	16.8971
					3 G	2.5380						2D	16.9318
					1 G	2.5806						2P	17.0018
					3 F	2.5641	Br		2	6	-1	1 S	18.4194
					1 F	2.5784			2	5	0	2 P	19.3078
					5D	2.4923			2	4	+1	3 P	20.6445
					3D	2.5531						1D	20.6939
					1D	2.6099						1 S	20.7840
					3P	2.5641	Kr		2	6	0	1 S	23.3808
					1S	2.6355			2	5	+1	2 P	24.7553
	4	1		+1	6D	3.7770	Rb		2		-1	1S	0.6668
	3	2			4F	4.1301			1		0	2S	1.2947

 10
$\mp \quad 10$
$7 \quad 10$
Table 2 (continued).

Element Configuration				Charge	Term	$\begin{aligned} & \|\Psi(0)\|_{\mathrm{ns}}^{2} \\ & \text { a.u. } \end{aligned}$	Element Configuration					Charge	Term	$\begin{aligned} & \|\Psi(0)\|_{\text {ns }}^{2} \\ & \text { a.u. } \end{aligned}$
\bar{f}	d	S	p					f	d	s	p			
Co					4P	3.4761	Rh		$8{ }^{\circ}$	2		-1	3P	2.4495
					2P	3.4848			8	1		0	4F	4.6496
	6	2		+1	5D	5.6140			7	2			4F	5.6051
Ni	10	1		-1	2S	0.5195			7	1		+1	5F	7.8654
	9	2			2D	1.5195			6	2			5D	8.4977
	9	1		0	3D	2.8563			6	1	1			$16.901^{\text {b }}$)
	8	2			1 G	3.8423	Pd		9	2		-1	2D	2.5981
					3 F	3.8083			9	1		0	3D	4.7483
					1D	3.8232			8	2			3F	6.0270
					3P	3.8264			8	1		+1	4F	8.2097
					1 S	3.8948			7	2			4F	9.1565
	7	2		+1	4F	6.1592			7	1	1			$18.238^{\text {b }}$)
Ag	10	2		-1	1S	2.7205	Tm	13		2		0		4.534
	10	,		0	2S	4.8022	Yb	14		2		0		4.661
	9	2			2D	6.4405	Lu	14	1	2		0		5.716
	9	1		+1	3D	8.6034	Hf	14	2	2		0		6.596
	8	2			3F	9.8207		14	1	1	1	+1		19.392 ${ }^{\text {b }}$)
	8	1	1			$19.455^{\text {b }}$)	Ta		3	2		0		$7.393^{\text {c }}$)
Cd	10	2							2	1	1	+1		$21.821^{\text {b }}$)
	10	1					W		4	2		0		$8.137^{\text {c }}$)
	9	2							3	1	1	+1		$23.760^{\text {b }}$)
In		2	2	-1	3P	8.8992	Re		5	2		0		$8.839^{\text {c }}$)
		2	1	0	2P	9.7362			4	1	1	+1		$25.827^{\text {b }}$)
		2		+1	1 S	11.1402	Os		6	2		0		9.508 ${ }^{\text {c }}$)
Sn		2	3	-1	4S	11.6116			5	1	1	+1		$27.664^{\text {b }}$)
		2	2	0	3 P	12.6795	Ir		7	2		0		$10.151^{\text {c }}$)
		2	1	+1	2P	14.1296			6	1	1	+1		$29.581^{\text {b }}$)
Sb		2	4	-1	3P	14.7701	Pt		9	1		0		10.769 ${ }^{\text {c }}$)
		2	3	0	4S	15.7732			7	1	1	+1		$31.612^{\text {b }}$)
		2	2	$+1$	3P	17.2812	Au		10	1		0		$11.366^{\text {c }}$)
Te		2	5	-1	2P	18.0550			8	1	1	+1		$33.324^{\text {b }}$)
		2	4	0	3 P	19.1965								

$$
\begin{gathered}
\left.11.946^{c}\right) \\
\left.35.064^{\mathrm{b}}\right) \\
\left.16.2805^{\mathrm{c}}\right) \\
\left.20.5308^{\mathrm{c}}\right) \\
\left.24.8619^{c}\right) \\
\left.29.3335^{\mathrm{c}}\right) \\
\left.33.9803^{\mathrm{c}}\right) \\
\left.38.8213^{\mathrm{c}}\right) \\
\left.2.544^{\mathrm{d}}\right) \\
\left.4.396^{d}\right) \\
\left.5.322^{\mathrm{d}}\right) \\
\left.6.160^{\mathrm{d}}\right) \\
\left.5.630^{d}\right) \\
\left.5.776^{d}\right)
\end{gathered}
$$

$$
0-1+00000
$$

$$
\rightarrow \rightarrow N m \forall n \circ
$$

$$
4-4 n N n N T
$$

$$
9^{a}
$$

$+\underset{+1}{+0+2+00000000000000}$
のものサーにー

[^1]This conclusion is further confirmed by the following facts: (i) Isomeric compounds like the pairs cis/trans $\left[\mathrm{PtCl}_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$, which should have comparable charges on platinum, show differences in their ${ }^{1} J(\mathrm{Pt}, \mathrm{P})$ values of 1128 Hz [12] comparable in magnitude to differences between Pt (IV) and Pt (II) complexes; (ii) In complexes of the type $\left[\mathrm{PtX}\left(\mathrm{PR}_{3}\right)_{3}\right]^{+}$[13] the coupling constants ${ }^{1} J(\mathrm{P}-\mathrm{Pt}-\mathrm{X})$ and ${ }^{1} J$ (P-Pt-P) (that share the same $\left|\Psi_{6 s, \mathrm{Pt}}(0)\right|^{2}$ term) differ from each other by the same amount as ${ }^{1} J(\mathrm{P}, \mathrm{Pt})$ in the pairs cis/trans $\mathrm{PtX}_{2}\left(\mathrm{PR}_{3}\right)_{2}$. Moreover, in spite of the total positive charge the coupling constants are also comparable in magnitude to those of the uncharged species; (iii) The ${ }^{31} \mathrm{P}-\mathrm{NMR}$. spectrum of cis $\left[\mathrm{PtCl}\left(\mathrm{CH}_{3}\right)\right.$ $\left(\mathrm{PEt}_{3}\right)_{2}$] shows two resonances having coupling constants to platinum of 4179 and 1719 Hz [14]. Since these two coupling constants must share the same $\left|\Psi_{6 s, \mathrm{Pt}}(0)\right|^{2}$ term and presumably have nearly identical $\left|\Psi_{3 s, P}(0)\right|^{2}$ values, this large difference must be entirely an effect of the polarizability term, $\Pi(\mathrm{Pt}, \mathrm{P})$. Since these latter two values of ${ }^{1} J(\mathrm{Pt}, \mathrm{P})$ span approximately the whole range of platinum phosphine coupling constants it is proven that an explanation of that big a variation in ${ }^{1} J(\mathrm{Pt}, \mathrm{P})$ can be given solely on the basis of changes in the polarizability term. However, the importance of fluctuations of the $\left|\Psi_{\mathrm{ns}}(0)\right|^{2}$ terms on ${ }^{1} J(\mathrm{M}, \mathrm{P})$ remains unclear. A systematic study of $\left|\Psi_{\text {ns }}(0)\right|^{2}$-values as a function of charge was therefore undertaken. The results of this study are presented in Table 2 together with representative additional results in Table 3 and shall now be discussed in some detail.

The s-densities depend within a formal charge upon the electron configuration and the spectroscopic term of a configuration. The influence of the term is small as can be seen from Table 2. The largest difference in $\left|\Psi_{n s}(0)\right|^{2}$ for the ground state configurations of Cr, Mn and Fe deviate $9 \%, 7 \%$ and 4% from the mean value. Higher multiplicities tend to have lower s-densities at the nucleus, whereas the dependence on the value of the total orbital angular momentum, L, seems irregular. The dependence of $\left|\Psi_{\mathrm{ns}}(0)\right|^{2}$ on orbital occupation is much more pronounced as can be seen from Table 2. The excitation of an electron into a shell with increased main quantum number results after Slater [9] in a lesser shielding of the other electrons from the nuclear charge, which in turn increases the value of $\left|\Psi_{\mathrm{ns}}(0)\right|^{2}$. If the electron in question is removed completely an even more pronounced raise in $\left|\Psi_{n s}(0)\right|^{2}$ is calculated.

The discussion of the dependence of $\left|\Psi_{n s}(0)\right|^{2}$ on formal charge can be done on the basis of two quantities, the s-density difference per charge unit or the slope of the s-density given by a second order polynoma in charge ${ }^{2}$). Both these quantities are larger for transition metals (mean difference 2.2 ± 0.8 atomic units between $\mathrm{Q}=1$ and $\mathrm{Q}=0$, mean slope 2.1 ± 0.7 atomic units per charge unit at zero charge)
${ }^{2}$) The slope of the function $\left|\Psi_{n S}(0)\right|^{2}(Q)=a+b Q+c Q^{2}$, where Q is the charge, at zero charge is given by the value of b. The values of a, b and c can be analytically given if the points $\mathrm{Q}=-1,0,1$ are used only.

$$
\begin{aligned}
& \mathrm{a}=\left|\Psi_{\mathrm{ns}}(0)\right|^{2}(\mathrm{Q}=0) \\
& \mathrm{b}=\left[\left|\Psi_{\mathrm{ns}}(0)\right|^{2}(\mathrm{Q}=1)-\left|\Psi_{\mathrm{ns}}(0)\right|^{2}(\mathrm{Q}=-1)\right] / 2 \\
& \mathrm{c}=\left[\left|\Psi_{\mathrm{ns}}(0)\right|^{2}(\mathrm{Q}=1)+\left|\Psi_{\mathrm{ns}}(0)\right|^{2}(\mathrm{Q}=-1)-2\left|\Psi_{\mathrm{ns}}(0)\right|^{2}(\mathrm{Q}=0)\right] / 2
\end{aligned}
$$

Alternatively they could be optimized by a least squares treatment.

Table 3. Dependence of $\left|\Psi_{s}(0)\right|^{2}$ of niobium and phosphorus on configuration and charge

			$\underline{\left\|\Psi_{s}(0)\right\|^{2}}$				
			5 s	4s	3s	2 s	1 s
Nb^{-1}	$\mathrm{d}^{5} \mathrm{~s}$	${ }^{7} \mathrm{~F}$	1.650	55.47	379.3	2166	21371
	$\mathrm{d}^{4} \mathrm{~s}^{2}$	${ }^{5} \mathrm{D}$	1.788	55.73	379.3	2166	21371
$N b^{0}$	d^{5}	${ }^{6} \mathrm{~S}$	-	55.10	379.3	2166	21371
	$\mathrm{d}^{4} \mathrm{~s}^{1}$	${ }^{6} \mathrm{D}$	3.698	55.88	379.4	2167	21371
	$d^{3} s^{2}$	${ }^{4} \mathrm{~F}$	3.900	56.46	379.1	2164	21366
Nb^{+1}	d^{4}	${ }^{5} \mathrm{D}$	-	55.45	379.4	2167	21371
	$\mathrm{d}^{3} \mathrm{~s}^{\text {1 }}$	${ }^{5} \mathrm{~F}$	5.547	56.52	379.2	2167	21371
	$\mathrm{d}^{2} \mathrm{~s}^{2}$	${ }^{3} \mathrm{~F}$	5.939	57.62	379.6	2167	21370
P^{-1}	$\mathrm{s}^{2} \mathrm{p}^{4}$	${ }^{3} \mathrm{P}$			5.312	74.74	1012
P0	$\mathrm{s}^{2} \mathrm{p}^{3}$	${ }^{4} \mathrm{~S}$			5.628	74.62	1012
P^{+1}	$\mathrm{s}^{2} \mathrm{p}^{2}$	${ }^{3} \mathrm{P}$			6.215	74.78	1013
P^{+2}	$\mathrm{s}^{2} \mathrm{p}^{1}$	${ }^{2} \mathrm{P}$			6.884	74.88	1013
P^{+3}	s^{2}	${ }^{1} \mathrm{~S}$			7.614	75.16	1013
\mathbf{P}^{+4}	s^{1}	${ }^{2} \mathrm{~S}$			7.722	75.17	1013

than for main group elements (mean difference 0.9 ± 0.4 atomic units between $\mathrm{Q}=1$ and $\mathrm{Q}=0$, mean slope 0.8 ± 0.4 atomic units per charge unit at zero charge). This is a consequence of the fact that changes in charge are due to changes in the number of ($\mathrm{n}-1$) d electrons for the transition metals and to changes in the number of np electrons for the main group elements. Are changes even due to alteration in shells with larger main quantum number than of the s-orbital under consideration effects on the radial function of this orbital should merely exist. This expected behaviour is indeed observed for 'core' s-orbitals as shown in Table 3. Again the different shielding abilities of electrons in states with different main quantum numbers are demonstrated.

In the light of these results, the commonly used assumption of constant nsdensities at the nucleus in a series of compounds is justified for the main group elements but has to be used with caution in connection with transition metals. At the same time it seems unlikely that the raise in ${ }^{1} J(\mathrm{M}, \mathrm{P})$ by a factor of up to 6 when R in PR_{3} is replaced by a more electronegative group $\mathrm{R}^{* 3}$) (see also [15a-c]) can be explained by orbital contraction phenomena on phosphorus. As shown by Table 4, a total charge range on phosphorus in different environments of about one charge unit and a difference of about 0.7 charge units between phosphine and phosphite complexes seems possible. Only small changes in the phosphorus 2 p binding energies occurred in ESCA. spectra which experimentally confirms minor alterations in charge [16]. One charge unit, on the other hand, is far less than what is needed to explain a factor of up to six in the observed

[^2]coupling constants solely by orbital contraction, since one charge unit results in only a 7% increase of the 3 s-density on phosphorus. Even a range of five charge units could explain a factor of 1.45 only (see Table 3).

If orbital contraction on phosphorus can be excluded as a main source for the observed differences, the responsible term must be the mutual polarizability, $\Pi(\mathrm{A}, \mathrm{B})$, in equation (2) or put in terms of a valence bond description the s-character of the phosphorus lone pair. The influence of the electronegativity of \mathbf{R} on the lone pair s-character in PR_{3} and on ${ }^{1} J(\mathrm{H}, \mathrm{P})$ in HPR_{3}^{+}was therefore studied by MO-calculations of the extended Hückel type. The R groups were single atoms with radial functions identical to those of chlorine. The different electronegativities were simulated by shifting the valence-state ionization potentials of the R atom from 5 and 10 eV for p and s orbitals respectively (roughly simulating $\mathrm{R}=$ alkyl) to 20 and 35 eV (corresponding to $\mathrm{R}=$ fluorine). As pictured in Figure 4, these

Fig. 4. Percentage of s-character of the phosphorus lone pair in $P X_{3}$ and ${ }^{1} \mathrm{~J}(P, H)$ in $H P X_{3}^{+}$versus VSIP of s - and p-orbitals of the x group as calculated by the EHMO method

Table 4. Calculated charges on phosphorus and boron of some compounds of the type $P R_{3}$ and $H_{3} B-P R_{3}$

R	PR_{3}	$\frac{\mathrm{H}_{3} \mathrm{~B}-\mathrm{PR}_{3}}{}$	
$\mathrm{Q}(\mathrm{P})$	$\mathrm{Q})$		
H	+0.35	+0.57	-0.08
$\left.\mathrm{CH}_{3}{ }^{\mathrm{a}}\right)$	+0.35	+0.75	-0.12
NH_{2}	+0.86	+1.16	-0.18
OH	+1.01	+1.27	-0.13
Cl	+0.76	+0.90	-0.11
F	+0.95	+1.28	-0.17
PH_{4}	+0.66		
$\mathrm{~F}_{3} \mathrm{P}=0$	+1.54		

a) See[18]
changes result in an increase of the s-character of the phosphorus lone pair from about 3% to 30%, whereas the p-character remains nearly constant between 44% and 48%. This is analogous to a possible explanation for the increase in inversion barrier along the series $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}$ [17]. Furthermore, these results are in fair agreement with ab initio calculations that report the s-character of the lone pairs of $\mathrm{PH}_{3}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ and PF_{3} to be $17 \%, 14 \%$ and 35% respectively [18]. The same Figure 4 shows the influence of the electronegativity of R on ${ }^{1} J(\mathrm{H}, \mathrm{P})$ in HPR_{3}^{+}. If R becomes more electronegative, the calculated coupling constant (constant s-densities were used) increases from about 180 to 820 Hz . These results too suggest that differences in ${ }^{1} J\left(\mathrm{M}, \mathrm{PR}_{3}\right)$ as a function of the electronegativity of R are for the most part an effect of the polarizability term and to a minor extent of the s-density terms. These results are also in agreement with two ESR. studies [4] which report the phosphorus s-character in the Co-L bond in complexes of the type $\mathrm{Co}(\mathrm{TTP}) \mathrm{L}$ (TTP $=$ tetraphenylporphyrin) for $\mathrm{L}=\mathrm{PF}_{3}, \mathrm{P}(\mathrm{OMe})_{3}, \mathrm{PMe}_{3}$, $\mathrm{PMe}_{2} \mathrm{Ph}$ and PEt_{3} to be $68 \%, 51 \%, 28 \%$ and 27%.

Conclusions. - The s-densities at the nucleus behave as qualitatively predicted by Slater's rule. Fluctuations of $\left|\Psi_{\mathrm{ns}}(0)\right|^{2}$ induced by alterations of charge may play a - although minor - role in determining the magnitude of the one bond coupling constant ${ }^{1} J(\mathrm{M}, \mathrm{X})$. The maximum charge range of an element in different chemical environments will probably be less than one charge unit and will become smaller the more covalent and extended the molecular framework in question is. Therefore, the $\left|\Psi_{\mathrm{ns}, \mathrm{M}}(0)\right|^{2}$ term of a transition metal will change by a factor of less than 1.8 if the alteration in charge is completely due to a change in d-orbital population. In typical organometallic compounds (meaning covalent extended molecules) changes will be less than one charge unit and only partially due to alterations in d-orbital occupancy and a factor of less than say 1.3 seems realistic and will be even nearer to unity for a series of compounds with merely changing proximity of the atom in question. If X is a main group element, its $\left|\Psi_{\mathrm{ns}, \mathrm{X}}(0)\right|^{2}$ will change by a factor of 1.1 for one charge unit and will practically not alter in a series of different environments. In summary, the s-densities at the nuclei can, as a first approximation, be assumed constant as long as differences in ${ }^{1} J(\mathrm{M}, \mathrm{X})$ of more than about 20% are discussed. Nevertheless, this assumption
should be used with some care, especially if transition metals in changing proximities are involved.

Because of the characteristics summarized above, changes of the $\left|\Psi_{3 s, \mathrm{P}}(0)\right|^{2}$ term in expression (2), while changing the nature of R in PR_{3}, can be ruled out as a major effect on the magnitude of the coupling constant ${ }^{1} J(\mathrm{M}, \mathrm{P})$. An alternative explanation with the help of the mutual polarizability can be offered instead. The s-character of the phosphorus lone pair in PR_{3} changes considerably with the electronegativity of R although the angle $\Theta(\mathrm{RPR})$ merely changes. This and the low values of the lone pair s-character in spite of Θ (RPR) being not far from 90° is in contradiction to simple rehybridization arguments which also seem to be in error if compared to $a b$ initio results.

Acknowledgement is made to the Swiss National Science Foundation. Fruitful discussion with Dr. P. S. Pregosin is gratefully acknowledged.

REFERENCES

[1] J.A. Pople \& D. P. Santry, Mol. Phys. 8, 1 (1964).
[2] A. Pidcock, R.E. Richards \& L.M. Venanzi, J. Chem. Soc. (A) 1966, 1707.
[3] a) G. G. Mather \& A. Pidcock, J. Chem. Soc. (A) 1970, 1226; b) S.O. Grim, D. A. Wheatland \& W. McFarlane, J. Am. Chem. Soc. 89, 4473 (1967); c) S.O. Grim, P. R. Allister \& R.M. Singer, J. Chem. Soc., Chem. Commun. 1969, 38; d) E. O. Fischer, R. L. Keiter, L. Krauss \& J. G. Verkade, J. Organomet. Chem. 37, C7 (1972); e) P.S. Pregosin \& R.W. Kunz, 'NMR., Basic Principles and Progress', Vol. 16, Springer Verlag, Berlin, Heidelberg, New York 1979.
[4] a) B. B. Wayland, M.E. Abd-Elmageed \& L.F. Mehne, Inorg. Chem. 14, 1456 (1975); b) B. B. Wayland \& M.E. Abd-Elmageed, J. Am. Chem. Soc. 96, 4809 (1974).
[5] E. Clementi \& C. Roetti, Atomic Data and Nuclear Data Tables 14, 177 (1974).
[6] J. H. Ammeter, H. B. Bürgi, J. C. Thibeault \& R. Hoffmann, J. Am. Chem. Soc. 100, 3686 (1978).
[7] a) GAUSSIAN-70, QCPE 236, Indiana University; b) W.J. Hehre, R. Ditchfield, R.F. Steward \& J. A. Pople, J. Chem. Phys. 52, 2769 (1970).
[8] a) B.A. Goodman \& J. B. Raynor, J. Inorg. Nucl. Chem. 32, 3406 (1970); b) J. B. Mann \& J.T. Waber, Atomic Data 5, 201 (1973); c) J.B. Mann, Atomic Data and Nuclear Data Tables 12, 1 (1973); d) C. Froese-Fischer, Atomic Data 4, 301 (1972).
[9] J. C. Slater, Phys. Revs. 36, 57 (1930).
[10] E. Clementi \& D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
[11] B. Meyer, 'Low Temperature Spectroscopy', American Elsevier Publishing Company, Inc., New York 1971, pp. 36-41.
[I2] a) S.O. Grim, R.L. Keiter \& W. McFarlane, Inorg. Chem. 6, 1133 (1967); N. Ahmad, E.W. Ainscough, E. W. James \& T.A. Robinson, J. Chem. Soc., Dalton 1973, 1148; b) G. G. Mather, A. Pidcock \& G.J.N. Rapsey, J. Chem. Soc., Dalton 1973, 2095.
[13] G. G. Mather, G.J. N. Rapsey \& A. Pidcock, Inorg. Nucl. Chem. Lett. 9, 567 (1973).
[14] F. H. Allen \& A. Pidcock, J. Chem. Soc. (A) 1968, 2700.
[15] a) G.A. Gray \& T.A. Albright, J. Am. Chem. Soc. 99, 3242 (1977); b) W.J. Stec, A. Okruszek, B. Uznański \& J. Micholski, Phosphorus 2, 97 (1972); c) D. Rehder \& W. L. Dorn, Trans. Met. Chem. 1, 233 (1976); D. Rehder, J. Magn. Res. 25, 177 (1977).
[16] a) J. R. Van Wazer, R.G. Albridge, W. Slec \& W.E. Morgan, Inorg. Chem, 10, 976 (1971); b) S.C. Avanzino, W. Jolly, M.S. Lazarus, W. B. Perry, R.R. Rietz \& T.F. Schaaf, Inorg. Chem. 14, 1595 (1975).
[17] C. C. Levin, J. Am. Chem. Soc. 97, 5649 (1975).
[18] I. H. Hillier \& V.R. Saunders, Trans. Faraday Soc. 66, 2401 (1970).

[^0]: ${ }^{1}$) The phosphorus 3 s-energy ($\sim 19 \mathrm{eV}$) corresponds roughly to the transition metal (n -1)d-levels ($10-21 \mathrm{eV}$) whereas the 3 p -energy (9.7 eV) is comparable to the ns-energies of transition metals (6-8 eV). If the transition metal is replaced by a main group element, the ($n-1$) orbitals drop to $32-87 \mathrm{eV}$ and shrink considerably, and the ns- and np-orbitals are energetically placed (11-27 and $5-12 \mathrm{eV}$ respectively) where formerly ($\mathrm{n}-1$) d - and np-orbitals were located.

[^1]: ${ }^{\text {a）}}$ In atomic units，wave functions from ref． 5 where not otherwise stated．${ }^{\text {b }}$ ）See［8a］．${ }^{\text {c }}$ ）See［8d］．${ }^{\text {d }}$ ）See［8b，c］．

[^2]: ${ }^{3}$) The coupling constant ${ }^{1} J(\mathrm{~W}, \mathrm{P})$ in $\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{PR}_{3}\right)$ is for $\mathrm{P}\left(\mathrm{SnMe}_{3}\right)_{3} 143 \mathrm{~Hz}, \mathrm{PBu}_{3} 227 \mathrm{~Hz}, \mathrm{PPh}_{3}$ $280 \mathrm{~Hz}, \mathrm{P}(\mathrm{OEt})_{3} 391 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3} 297 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{SCH}_{2}\right)_{3} \mathrm{CC}_{5} \mathrm{H}_{11} 276 \mathrm{~Hz}, \mathrm{PI}_{3} 334 \mathrm{~Hz}, \mathrm{PBr}_{3} 398 \mathrm{~Hz}$, $\mathrm{PCl}_{3} 426 \mathrm{~Hz}, \mathrm{PF}_{3} 485 \mathrm{~Hz} .{ }^{1} J(\mathrm{~W}, \mathrm{P})$ is roughly following the electronegativity of the R group $[3 \mathrm{e}]$. ${ }^{1} J\left({ }^{17} \mathrm{O},{ }^{31} \mathrm{P}\right.$) in $\mathrm{R}_{3} \mathrm{P}(\mathrm{O})$ are reported spanning the range from 90 to 205 Hz (factor of ~ 2.2) [15a]. ${ }^{1} J\left(\mathrm{Se},{ }^{31} \mathrm{P}\right.$) in $\mathrm{R}_{3} \mathrm{P}(\mathrm{Se})$ has values from 936 to 699 Hz (factor of 1.3) [15b]. ${ }^{1} J\left(\mathrm{~V},{ }^{31} \mathrm{P}\right.$) in $\left[\mathrm{V}(\mathrm{CO})_{5}\left(\mathrm{PR}_{3}\right)\right]$ changes from $170\left(\mathrm{PH}_{3}\right)$ to $730 \mathrm{~Hz}\left(\mathrm{P}-i-\mathrm{Bu}_{3}\right)$ giving a factor of 4.3 and from $110\left(\mathrm{Pcy}_{3}\right)$ to $660 \mathrm{~Hz}\left(\mathrm{P}-i-\mathrm{Bu}_{3}\right)$ giving a factor of $6[15 \mathrm{c}]$.

